CONVECTIVE STABILITY IN A SYSTEM OF TWO INFINITE
HORIZONTAL LAYERS OF IMMISCIBLE LIQUIDS
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A numerical analysis is offered of convective stability in a system of two adjacent horizontal
layers of immiscible liquid.

Underground cavities are used for long-term storage of large quantities of liquid fuel. The volume
is initially filled with either natural gas under high pressure or 2 brine consisting of a concentrated solu-
tion of common salt in water.

Heat-transfer processes in the system of two adjacent immiscible liquids created by filling the cavity
with fuel are quite complex and require detailed study. In particular, one of the important problems is the
study of conditions for development of convective liquid motion in such a system.

The study of hydrodynamic stability of liquid motion with natural convection in such a system must
commence with the classical formulation of the problem of layers infinite in the horizontal plane, bounded
by rigid horizontal surfaces. The problem is formulated as a conjugate one, in the sense of [1].

1. We will consider a system of two horizontal liquid layers with a division between them (the liquids
do not mix), with the layer of lighter liquid located above. The external boundaries are rigid surfaces
maintained at constant temperatures, the temperature of the lower lamina Ty being higher than that of
the upper Ty (6T = Tg —Tyy > 0). We choose a vertical axis directed upward as the z axis, with origin
at the lower boundary. Under these conditions, each layer will have its own constant temperature gradient,
directed downward. Consequently, at certain temperature differentials 6T, mechanical liquid equilibrium
may prove unstable with respect to some perturbation, the development of which over time may lead to
convection.

We will consider the stability of equilibrium with reference to small perturbations (linear-stability-
theory approximation). In this approximation small perturbations of velocity_x?j {uj, Vi Wj} and tempera-
ture T satisfy the following linear equations ([2], Chap. 1):

QEJL. _— _1— VP; - ’V]-A;j -+ gﬁT]?,
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where the index j takes on the values 1, 2, and quantities with indices 1, 2 refer to the lower and upper
layers, respectively; r is a unit vector directed upward along z.

We will write boundary conditions for system (1). At the solid boundaries for z = 0, H
w=v;=w,=0; T;=0 (j=1, 2). (2)
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The condition for wj (j = 1, 2) follows from the requirement of impermeability of the liquid interface, and
the conditions for the components u;, vy {j =1, 2) from the requirement of equality of tangent velocity com-
ponents and stresses at the interface.

In studying normal perturbations (~e%t and periodic in the horizontal plane), one usually eliminates
pressure p and components u, v from Eq. (1), obtaining one fourth-order equation in the component w,
For the existence of solutions allowing separation of the variables obtained in a system of equations in T
and w, it is necessary that the condition A + K% = 0 be satisfied, where Ay is the Laplacian in the plane
(x,y), and f is the temperature, or the vertical velocity component, k? = ki + k3. We note that in this case
the conditions do not introduce into the boundary problem separate wave numbers k% and k%, defining the
periodicity of the perturbations along the horizontal axes x and y. For this reason the eigennumbers of
the problem, and also the critical Rayleigh number, are determined by the parameter k?, and the ratioc
between ki and k% remains arbitrary. Thus, to one and the same critical Rayleigh number there corre-
sponds an infinite set of perturbations. In particular, there will exist two-dimensional (planar) motions
in the form of convective swells with axes parallel,for example, to the y axis (k% =0, k% =k?%). Itis this
latter type of perturbation that we will consider further. Consideration of normal perturbations of the
two-dimensional convective swell type, while not destroying the generality of the results relative to criti-
cal parameters, permits reduction of Eq. (1) to equations for temperature and current function in the
plane (x, yv), since for the perturbations considered velocity components v will be absent from the motion
equation.

If we introduce the change in variables u = —9¢ /6z, w = 8y /0% and eliminate pressure in the motion
equations (1), then in dimensionless form the equations for perturbations ¥, T G = 1, 2) will be written
in the form
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Here we introduce the notation
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As characteristic units H, Hz/ai, ai/H, 6T, are chosen for length, time, velocity, and temperature,
respectively; dT;-)/ dz § =1, 2) is the gradient of the unperturbed temperature distribution, defined from

the equation dZT;?/dz2 =0 (j = 1, 2), with the following boundary and conjugate conditions at the interface:

ari . . 475 1 .
dz 1+ ly0,—1)  dz T4 4,y — 1) ©)

We write boundary conditions for Eqgs. (4), (6). At the rigid boundaries

My _ 0% g O 0%
0z Ox " oz ox (7)

T,=0at z=0, Ty,=0at z=1,
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and at the liquid interface for z = Iy,

oYy — o, =0 oy — oY, | Oy — ”. azq’z .
dx ox Tz 9z o o2
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0z 0z
If the solution is taken periodic in x in the form

Y; =iV, (z, Texp(ikx), T;=18;(z v)exp(ikx) (j=1, 2), 9)

then for the amplitude \Ifj z, 1), 6 (z, 7) from Egs. (4)-(8) we obtain
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and boundary conditions on the rigid boundaries,
‘PIZ& =0, ;=0 at z2=0;
0z
- (12)
Y= 222 =0, 0,=0 at z=1;
0z .

and at the interface for z = Iy,
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For purely computational reasons [3] we replace the first fourth-order equation (10), (11) by an
equivalent system of two second-order equations, introducing the auxiliary turbulence function

DO, 2)= (—;;?— — kz) ¥ (t, 2). (14)

Utilizing Eq. (14), it will be convenient to write Egs. (10), (11) in matrix form:

— 69 2, = .
AX;—B f(l =0, X, =X(¥, ®; 8) (=1, 2),
ot
l— -p 1 o | [ —p 1 0 0 0 o0 (15)
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1558



From the boundary conditions (13) it is simple to obtain the conjugate conditions for the function &

(14) in the_form
Oy =p, @y at z=1p, (16)
If we take the time dependence in Eq. (15) in the form exp (v7), we obtain the problem of finding the
eigenvalues,
AX,—0oBX;=0 (i=1,2) (17)
with boundary conditions (12), (13), and (16), while the components of the vector—)z in this equation will be
functions only of the coordinate z.

2. The problem of determining the eigenvalues of Eq. (17) with boundary conditions (12), (13), and
(16) will be solved numerically, using the establishment method in determining eigenvectors from Eq. (15),

according to [3].

We write the finite~difference problem approximating Eq. (15) in the form

Xk AXKL - X = BRI (18)
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Here h is the coordinate increment; A7 is the time increment; the index i indicates change in coordinate,
and the index j indicates change in time.

In obtaining the finite-difference equation (18) with second-order approximation of the differential
operators a four-point model, two-layered in time, was employed.

To solve Eq. (18) with corresponding finite -difference boundary conditions we use the matrix function
Xl—~ - P XL T' L
1= 3 1 (19)
(=123 ..., N1, j=1,2 3, ...).

Recurrence relationships for the drive matrices Pj and Vectors—(fz% i=1,2,3,...,N-=1)are
written in the form
pi = —(B,; - Pi—l)_l; @ ’:““Pi(Bl)?{:“I - 5£—1)
20
(=12 i=1,23 .., N—1 j=1,223...) (20)

To commence computation with the recurrence formulas (20) it is necessary to determine the values
P, and QO from the boundary conditions (12) at z = 0. Moreover, because of the presence of a coefficient
dlscox.r.I.nulty surface, to establish continuous drive it is necessary to use Fq. (13) at z = I1, to determine
the quantities P, and Qn, which will serve as initial values for the upper layer.

For reverse drive with recurrence formula (19) it is necessary to determine XN X(O <I>N, 0) at the
point i = N ~1 from Eq. (12) for z = 1 and Eq. (19).
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It should be noted that in transforming to finite-difference equations for the boundary conditions (12)-
(13) the following complications arise. The conditions are such that it is impossible to directly determine
® from them. The & values at boundary points are determined approximately during computation, using
Eq. (14) and ¥ values at nodes closest to the boundaries, following [4].

From the finite-difference approximation of the boundary conditions in increment h we obtain the
matrix Py, the vector Q%, and the vector component &) in the following form:

N
0 0 O
Po={ am —05 0 |3 @ =3q@ 0 0y
' 0 0 0 .

; [ 3 5 2 3
Dy = {4 o — 0355 ) / (1 oS — o p%&_,) .

From the conjugate condition (13) and the definition of the turbulence function (14) in their second-
order approximation in h we obtain the relationship of the matrix P, and vector Q%l at the liquid interface
in the form

- 0 0 o 7
by b,
=L 2,0 - = 9
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Eigenvectors are found on the basis of a completely stabilized multistep exponential method. The
process of determining successive approximations in time, using the method employed for solution of
Eq. (19), will be denoted by the operator A, so that :

X = AX (=1,2 3 ...) v 2

To find the first three eigenvalues of the finite-difference problem corresponding to Eq. (17) an
invariant subspace is constructed, extended over the system of three corresponding eigenvectors (see
[3], p. 3). Briefly, the essence of this construction is as follovyf. Selecting for initial values three arbi-
trary (it is desirable that they be linearly independent) vectors Xf i=1, 2, 3), each with 3(N + 1) dimen-
sions, we construct, according to Eq. (21), a system of three mutually orthogonal vectors_}?g i=1,2,3;
j=1,2,8,...). Orthogonalization and normalization of the vectors in the computation process is per-
formed with the equation

T 1
Ny=—T§ [_ ¥, (2) O (2) — 0, (2)-9,, <zi>]
{:B‘ Pr (22)
(N =1k n, m=1,2 3

The sequence of vectors thus constructed at j — = has limits X i=1,2,3), which lie in the invariant sub-
space noted above.

1560



If these limiting vectors are used as a base for the subspace, the induction operator matrix L{am,n},
whose eigenvalues define the sought for eigennumbers of the problem, may be constructed as

O = AKXy X)) (o m=1, 2, 3). (23)

It is natural that in numerical computations, according to Eq. (23), as?(n =1, 2,3) the Vapproxima—
tions 3'(%1 are taken, with the condition required for stabilization of the iteration process (21).

The eigenvalues of the matrix L coincide with the eigenvalues of the parameter q; (i = 1, 2, 3) of Eq.
(18), which are related to the desired eigenvalues opi=1,2,3) of the finite-difference problem corre-
sponding to Eq. (17) by the relationship

o= 1Tl o1, 9 3 (24)
q;Av

The accuracy of eigenvector determination is controlled by the unbinding rate 6; (i = 1, 2, 3) of the
following and preceding time approximations of these vectors:

5=V @&, &) & =AUl — g0
(i=1,23 j=1238...)

(25)

where—fj{ are the eigenvectors of the problem which are linearly independent combinations of the approxi~

mations —}’{i, with the constants in these combinations being components of the corresponding vectors of
matrix L.

Numerical solution using the above algorithm was performed on a Minsk-22 M electronic computer.

3. The numerical-analysis method based on the solution algorithm presented above consists of the
following. For a given ratio of parameters and fixed ratio of liquid layer thicknesses, the neutral curve
R = f(k) is calculated. For a given k and a number of R values we define, according to Eq. (21), three
eigenvectors and corresponding eigennumbers (24). Calculations show that the first eigennumber o, is
linearly dependent on R over a sufficiently wide range. Thus, the neutral R value for a given k is found
by linear interpolation to oy = 0. By quadratic interpolation of the neutral-curve results the critical values
R* and k* are determined (Table 1).

The problem formulated, Egs. (10)-(14), contains a set of particular cases because there enter into
the equations, aside from R and k, six more arbitrary parameters — the ratios of the physical properties
of the liquids in the system. :

This present study will offer results of analysis of a brine (common salt solution) ~kerosene system
with the following parameters: Pr = 10; Ay; = 0.2; gy = 0.8; vyq = 1.17; a9y = 0.48; £y = 3.

Figure 1 shows the critical Rayleigh criterion R* as a function of relative depth of the lower liquid
layer I1. It is evident that with increase in I7, the R* values increase without limit, i.e., with decrease
in relative kerosene depth the hydrodynamic stability of the system (at least with respect to infinitely small
perturbations) increases. With decrease in Iy, the criterion R* asymptotically approaches a certain finite
value (R* ~ 74). The wave number k behaves in approximately the same manner relative to liquid depth 1.

The results obtained are of undoubted practical interest. The physical basis of these results may
be explained as follows. From Egq. (6) it follows that the ratio of the undisturbed temperature-distribution
gradients in the brine layer and kerosene is equal to (T /dz) /(dTg /dz) = Xy, With the numerical param-~
eter values in the case considered this ratio equals 0.2, i.e., in the kerosene layer the temperature gradient
is five times higher than in the brine layer. Therefore, for a given temperature differential between the
external boundaries, conditions for development of a volume force counteracting the force of viscous re-
sistance are more favorable in the kerosene layer. Consequently, it can be expected that perturbations
determining the development of instability in the entire system will be those arising in the kerosene layer
and characterized by its parameters.

If we define a Rayleigh criterion for the kerosene layer as R, = gB,(dT5 /dz)(H —h)*/a,v,, then R,
may be written in the form -

91Vay T—ly (1=hy) R
R, = . - 26
Ql ‘321 (1 —1 L)"‘ ? ( )
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KX) & or, substitutirig' numerical data for the parameters in our case,
- / we obtain
016107
1—0,8;,
R, = 0,188 =i R,
From this it follows that R{ varies with I1, in a fourth-order
" spbew? parabolic manner, under the condition, naturally, that R depends

weakly on Iy,, which, as follows from the observations above, occurs
in our case. Figure 1 agrees with this interpretation.

In an analogous manner it may be found that the wave number
k; is related to the wave number k, characterizing the periodicity

0 t20° /({ of perturbations in the kerosene layer by the formula

k v 2
. / ! I— Z‘L )
A ( The dependence of k; on I1, in Fig. 1 agrees with Eq. (27).
0 L
~ 0 g % 1 For the nonlinear instability problem in the case of convective
Fig. 1. k* (1) and R* (2) vs I1,. heat transfer in a horizontal layer of a homogeneous liquid, a method

was developed in [5] giving the limiting stable amplitude of convective
currents for a certain Rayleigh number interval, above the critical value. It was shown that an infinitely
small perturbation, corresponding in the linear theory to the first eigennumber o; > 0 for the critical
wave number k* and criterion R > R* after initial exponential growth will tend to an equilibrium perturba-
tion of finite amplitude. '

It then follows that in our case finite perturbations which mightbe estabhshed in the system con-
sidered will coincide in form with the first eigenvector of the corresponding linear theory problem. In

§,0° 7 ~ 8-0% ¢, 1° T 7 9-10%
/ / \ I A
12— 1+ )\ p 4 | / ‘-‘ 8

=il 4\ | 51’ A

5 11 ‘ :
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/ // ' ] \
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Fig. 2. Current functioh amplitude (solid lines) and tempera-
ture (dashed) for various I1,: 1) I1, = 0.1; 2) 0.2; 3) 0.3; 4) 0.4;
'5) 0.5; 6) 0.6; 7) 0.7; 8) 0.8.
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TABLE 1. Neutral Curves for Various Interface Positions I,

k R k R k R k R
Iy =01 I = 0,4 9,9 605,0 {y =0,85
L L 10 605.5 L
3 138,9 6,2 ‘ 236,8 10,5 6101 25 70624
4 107.3 6,5 235,7 11 619.6 25 4 7053,4
5 1049 6.6 236,2 255 7052, 1
5,5 1096 6.7 236.2 1, =0,7 25.6 70511
6 116.8 257 7050 4
6,5 126.4 I;, =05 11 1262 258 7050,0
11,5 1238,2 26 7650,3
I, =02 7,5 358,4 12 1223 3 27 7070,3
. 7.6 358,90 12,5 ] 1214.7
4 1425 7.7 357,7 13 1212.5 1, =109
5 1294 7.8 357.7 13,5 | 12159
5,1 1293 7.9 357,8 38 20808
5,2 129 4 8,0 358,1 Iy'=0,8 38,4 20799
6 135,4 8.1 3585 38,6 20797
o3 8.2 3592 17 3437 38.8 20796
L="Y 8,3 360,0 18 3375,6 33,(2) 28785
18,5 3358,8 39, 208
2 3(1)(25'2 [, =08 19 33439 39,4 20804
: 1237 19,5 33473 40,0 20828
5 ’ 85 620,6 20 3352,0 41,0 20897
5.6 169,3 9 6106 | 905 | 3363.0
5.7 169,2 9,5 | 6051 | g 33799
5,8 169,3 9.6 604,7 o
5,9 169,5 9.7 604 .6
7 181,0 9,8 604.7

Fig. 2a, b curves of the amplitude of the current function and temperature as functions of the vertical
coordinate are shown for various interface positions. It is evident that the main perturbation turbulence
(relative to high intensity) is localized in the kerosene layer, while the turbulence of opposite rotation

and significantly lower intensity in the brine layer localized in the region near the kerosene as layer thick-
ness increases. This also supports the interpretation of Fig. 1 given above,
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